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Abstract
In the φ-mapping theory, the topological current constructed from the order
parameters can possess different inner structures. The difference in topology
must correspond to the difference in physical structure. The transition between
different structures happens at the bifurcation point of the topological current.
In a self-interaction two-level system, the change of topological particles
corresponds to a change of energy levels.

PACS numbers: 02.40.Pc, 03.75.Fi, 03.65.−w

In recent years, topology has established itself as an important part of the physicist’s
mathematical arsenal [1]. The concepts of the topological particle and its current have been
widely used in particle physics [2, 3] and topological defect theory [4]. Here, the topological
particles are regarded as abstract particles, such as monopoles and point defects.

In this letter, we achieve an understanding new to topology and physics. Many physical
systems can be described by employing the order parameters. By making use of the φ-mapping
theory, we find that the topological current constructed from the order parameters can possess
different inner structures. The topological properties are basic properties for a physical system,
so the difference in configuration of the topological current must correspond to a difference in
physical structure.

Consider an (n+1)-dimensional system with an n-component-vector order parameter field
�φ(x), where x = (x0, x1, x2, . . . , xn) corresponds to local coordinates. The direction unit
field of �φ is defined by

na = φa

‖φ‖ , a = 1, 2, . . . , n (1)
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where

‖φ‖ = (φaφa)1/2.

The topological current of this system is defined by

jµ(x) = εµµ1...µn

A(Sn−1)(d − 1)!
εa1 ... an

∂µ1n
a1 · · · ∂µn

nan (2)

where A(Sn−1) is the surface area of the (n−1)-dimensional unit sphere Sn−1. Obviously, the
current is identically conserved:

∂µjµ = 0.

If we define a Jacobian by

εa1...anDµ

(
φ

x

)
= εµµ1...µn∂µ1φ

a1 · · · ∂µn
φan, (3)

then, as has been proved before [5], this current takes the form

jµ = δ( �φ)Dµ

(
φ

x

)
. (4)

Then, we can obtain

jµ =
l∑

i=1

βiηiδ(�x − �zi(x
0))

dz
µ

i

dx0
, (5)

in which zi(x
0) are the zero-lines where �φ(x) = 0, the positive integer βi and ηi = sgn D(

φ

�x )

are the Hopf index and Brouwer degree of φ-mapping [7] respectively, and l is the total number
of zero-lines. This current is similar to a current of point particles (and the ith one has the
charge βiηi) and the zero-lines zi(x) are just the trajectories of the particles; for convenience
we define these point particles as topological particles. Then the total topological charge of
the system is

Q =
∫

M

j 0 dnx =
l∑

i=1

βiηi,

where M is a n-dimensional spatial space for a given x0. This is a topological invariant and
corresponds to some basic conditions of this physical system. However, it is important that
the inner structure of the topological invariant can be constructed in different configurations,
i.e., the number of topological particles and their charge can be changed. This change in
configuration of the topological current must correspond to some change in physical structure.

All of the above discussion is based on the condition that

D

(
φ

x

)
= D0

(
φ

x

)∣∣∣∣
zi

�= 0

when D(φ/x)|zi
= 0 at some points p∗

i = z∗(x0
c ) at x0 = x0

c along the zero-line zi(x
0); it

is shown that there exist several crucial cases of branch processes which correspond to the
topological particle being generated or annihilating at limit points and splitting, encountering
another particle, or merging at the bifurcation points. A vast amount of literature has been
devoted to discussing these features of the evolution of the topological particles [8]. Here, we
will not spend more time on describing these evolutions, but will focus our attention on the
physical substance of these processes.

As we already know, all of these branch processes keep the total topological charge
conserved, but it is very important that these branch processes change the number and the
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charge of the topological particles. i.e. change the inner structure of the topological current.
From our point of view, a different configuration of a topological current corresponds to a
different physical structure.

We consider x0 as a parameter λ of a physical system. Let us define

fi(λ) = D0

(
φ

x

)∣∣∣∣
zi

. (6)

As λ changes, the value of fi(λ) changes along the zero-lines zi(λ). At a critical point λ = λc,
when fi(λc) = 0, we know that the inner structure of the topological current will be changed
in some way, and at the same time the physical structure will also be changed, i.e., the physical
structure when λ < λc will be different from the one when λ > λc. The transition between
these structures occurs at the bifurcation points where fi(λ) = 0.

As an application and example, let us consider a self-interacting two-level model
introduced in [9]. The nonlinear two-level system is described by the dimensionless
Schrödinger equation

i
∂

∂t

(
a

b

)
= H(γ )

(
a

b

)
(7)

with the Hamiltonian given by

H(γ ) =
(

γ /2 + (C/2)(|b|2 − |a|2) V /2

V /2 −γ /2 − (C/2)(|b|2 − |a|2)

)
, (8)

in which γ is the level separation, V is the coupling constant of the two levels, and C is the
nonlinear parameter describing the interaction. The total probability |a|2 + |b|2 is conserved
and is set to 1.

We assume a = |a|eiϕ1(t), b = |b|eiϕ2(t); the fractional population imbalance and relative
phase can be defined by

z(t) = |b|2 − |a|2, ϕ(t) = ϕ2(t) − ϕ1(t). (9)

From equations (7) and (8), we obtain

d

dt
z(t) = −V

√
1 − z2(t) sin[ϕ(t)] (10)

d

dt
ϕ(t) = γ + Cz(t) +

V z(t)√
1 − z2(t)

cos[ϕ(t)]. (11)

If we chose x = 2|a||b| cos(ϕ), y = 2|a||b| sin(ϕ), it is easy to see that x2 +y2 +z2 = 1 by
considering |a|2 + |b|2 = 1, which describes a unit sphere S2 with z and ϕ a pair of coordinates.
We define a vector field on this unit sphere:

φ1 = −V
√

1 − z2 sin(ϕ), (12)

φ2 = γ + Cz +
V z√
1 − z2

cos(ϕ). (13)

Apparently, there are singularities at the two pole points z = ±1, which make the vector
�φ discontinuous at these points. However, the direction unit vector �n is continuous. In the
φ-mapping theory, we only need the unit vector �n to be continuous and differentiable on the
whole sphere S2 (at the zero-points of �φ, the differential of �n is a general function), and the
vector �φ to be continuous and differentiable in the neighbourhoods of its zero-points. Then
from φ-mapping theory, we can obtain a topological current:

�j =
l∑

i=1

βiηiδ(ϕ − ϕi(γ ))δ(z − zi(γ ))
dzi

dγ

∣∣∣∣
pi

, (14)
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in which pi = pi(zi, ϕi) is the trajectory of the ith topological particle Pi and

ηi = sgn(D(γ )) = sgn

(
det

(
∂φ1/∂ϕ ∂φ2/∂ϕ

∂φ1/∂z ∂φ2/∂z

)∣∣∣∣
pi

)
. (15)

From equations (12) and (13), it is easy to see that �φ is single valued on S2, which indicates
that the Hopf index βi = 1 (i = 1, 2, . . . , l) here. It can be proved that the total charge of
this system is just the Euler number of S2 which is 2 [6]. This is a topological invariant of
S2 which corresponds to the basic condition of this system: |a|2 + |b|2 = 1. The following
discussion can show that this topological invariant can possess different configurations when
γ changes. This difference in topology corresponds to the change in adiabatic levels of this
nonlinear system.

We can prove that every topological particle corresponds to an eigenstate of the nonlinear
two-level system. By solving for �φ = 0 from (12) and (13), we find that there are two different
cases to discuss.

Case 1. For |C/V | � 1, there only two topological particles P1 and P2, which are located on
the lines ϕ = 0 and π respectively as shown in the upper panel of figure 1. All of them have
topological charge +1, and D(γ )|P1,2 > 0 for any γ . Correspondingly, in this case, there are
only two adiabatic energy levels in this nonlinear two-level mode for various γ [9], as shown
in the lower panel of figure 1; P1 corresponds to the upper level and P2 corresponds to the
lower level.

Case 2. For C/V > 1, two more topological particles can appear when γ lies in a window
−γc < γ < γc. The boundary of the window can be obtained by assuming D(γ )|Pi

= 0,
yielding

γc = (C2/3 − V 2/3)3/2. (16)

There is a striking feature at γ = −γc: there exists a critical point T ∗
1 (zc, π) with D(γc)|T ∗

1
= 0;

as we have shown in [8], we can prove that this point is a limit point. A pair of topological
particles P3 and P4 are generated with opposite charges −1 and +1 respectively; both of the
new topological particles lie on the line ϕ = π . One of the original topological particle, P2

with charge +1 on the line ϕ = π , moves smoothly up to γ = γc, where it collides with P3

and annihilates with it at another limit point T ∗
2 (−zc, π). The other, P1, which lies on the line

ϕ = 0, still moves appropriately with γ .
As pointed out by Wu and Niu [9], when the interaction is strong enough (C/V > 1), a

loop appears at the tip of the lower adiabatic level when C/V > 1 while −γc � γ � γc. We
show the interesting structure in figure 2, in which C/V = 2. For γ < −γc, there are two
adiabatic levels; the upper level corresponds to the topological particle P1, while the lower one
corresponds to the topological particle P2; for γ > γc, there are also only two adiabatic levels,
but this time the lower one corresponds to P4 while the upper one still corresponds to P1. The
arc part of the loop on the tip of the lower level when −γc < γ < γc just corresponds to P3,
which merges with the level corresponding to P4 at the point M on the left and with the one
corresponding to P1 at the point T on the right.

From the above discussion, one sees that when the structure of the topological current
is changed by generating or annihilating a pair of topological particles (the upper panel of
figure 2), at the same time the physical structure is changed by adding two energy levels or
subtracting two energy levels respectively (the lower panel of figure 2). The critical behaviours
happen at the limit points where D(γc)|T ∗

1,2
= 0.
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Figure 1. (a) The projection of the trajectory of topological particles on the (z–γ ) plane for
C/V = 0. Pi denotes the ith topological particle. (b) The energy levels for C/V = 0. Each level
is labelled by the topological particle which corresponds to it.

In fact, this nonlinear two-level model is of widespread interest, for it is associated with
a wide range of concrete physical systems, e.g., the Bose–Einstein condensate (BEC) in an
optical lattice [10] or in a double-well potential [11], and the motion of small polarons [12].
So, the relation between topological particles and physical inner structure can be observed
by experimental methods. Here we propose a suitable system in which to observe this
striking phenomenon: a BEC in a double-well potential [11, 13]. The amplitudes of general
occupations N1,2(t) and phases ϕ1,2 obey the nonlinear two-mode Schrödinger equations,
approximately [13]:

ih̄
∂φ1

∂t
= (E0

1 + U1N1)φ1 − Kφ2

ih̄
∂φ2

∂t
= (E0

2 + U2N2)φ2 − Kφ1

(17)

with φ1,2 = √
N1,2 exp(iϕ1,2), and the total number of atoms, N1+N2 = NT , is conserved. Here

E0
1,2 are the zero-point energies in the two wells, U1,2N1,2 are proportional to the atomic self-

interaction energy, and K describes the amplitude of the tunnelling between the condensates.
After introducing the new variables z(t) = (N2(t) − N1(t))/NT and ϕ = ϕ2 − ϕ1, one also
obtains equations having the same form as equations (7) and (8) except for the parameters
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Figure 2. (a) The projection of the trajectory of the topological particles on the (z–γ ) plane for
C/V = 2. Pi denotes the ith topological particle. (b) The energy levels for C/V = 2. Each level
is labelled by the topological particle which corresponds to it.

being replaced by

γ = −[(E0
1 − E0

2) − (U1 − U2)NT /2]/h̄, (18)

V = 2K/h̄, C = (U1 + U2)NT /2h̄. (19)

With these explicit expressions, our theory and results can be directly applied to this system
without intrinsic difficulty. In this system the topological particles can be located by the stable
occupation and relative phase ϕ = 0 or π for a given parameter γ . Also, one can draw
the zero-line for each topological particle by giving different values of γ . We hope that our
discussions will stimulate experimental works in this direction.

We note that for a system, when the global property (topology) is given, the interesting
feature is that under the same topology the topological configurations can be different;
this difference must correspond to different physical structure. This relation between the
topological configuration and physical structure gives an important property for classifying
some physical systems which contain many different structures.

We thank Professor B Y Ou for useful discussions. This project was supported by the
Fundamental Research Project of China.
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